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A theory of thin airfoils and slender bodies in fluids of 
finite electrical conductivity with aligned fields 

By EDMUND C.  LARYT 
Cornell University, Ithaca, New York 

(Received 1 April 1960 and in revised form 24 February 1961) 

The steady incompressible flow of a non-viscous conducting fluid about thin 
airfoils and slender bodies is studied for the case of a uniform applied magnetic 
field aligned with the undisturbed fluid stream. Solutions are found, subject to 
the restriction of small perturbations to the applied field. This condition deter- 
mines an upper limit on the range of conductivity to which the solutions are 
applicable, Certain results for larger values of conductivity are presented and 
discussed. 

The lift on airfoils is calculated, including the possibility of magnets and 
externally driven currents inside the airfoil, and a magnetohydrodynamic 
analogue to the Kutta condition is discussed. Drag formulae are presented for 
airfoils and slender bodies, and the distribution of internal currents and magnets 
for zero drag is shown. Optimum drag airfoils and bodies are discussed briefly. 

Introduction 
The magnetohydrodynamic flow about thin airfoils in an incompressible fluid 

of high electrical conductivity has been treated by Sears & Resler (1959) for both 
crossed and aligned magnetic and velocity fields. The case of crossed fields has 
been extended recently by McCune (1960) to apply to values of magnetic Reynolds 
number in excess of unity. 

The present paper is concerned with an extension of the aligned-fields analysis 
to arbitrary values of conductivity and to the flow about slender bodies of 
revolution. Singular solutions of the linearized equations for incompressible 
flow are derived and employed in the solution of boundary-value problems appro- 
priate to thin-airfoil and slender-body flows. As usual, viscous effects are 
neglected throughout, except that the usual Kutta condition is applied wherever 
appropriate for lifting airfoils. 

In  the limit of small conductivity, the magnetic field interacts only weakly with 
the flow, and the solutions must reduce to the conventional hydrodynamic 
results. On the other hand, for very large conductivity the perturbations are 
large in the magnetic boundary layer (Sears & Resler 1959), so that the lineariza- 
tion is valid only outside this layer. The latter consideration implies a restriction 
on the range of conductivity for which the linearized analysis is applicable to the 
entire flow field. It will be shown that the restriction is that the thickness of the 
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magnetohydrodynamic interaction region at the body (or magnetic boundary 
layer) be greater than the thickness of the body. On the other hand, from con- 
ventional boundary-layer theory, the neglect of viscosity is certainly justified 
if the thickness of the viscous boundary layer is small compared to the body 
thickness. Examples of situations in which these conditions are satisfied are: 
(1) in mercury, R, = 1.3 and Re = 107, based on a length of 10 cm and a speed of 
10mlsec; and ( 2 )  in sea water, R, = 0.01 and R, = 109, based on 100m and 
20 m/sec. 

The basic equations 
The governing equations for the steady flow of an inviscid, incompressible fluid 

of finite conductivity have been given by Sears & Resler (1 959). By employing 
the rtssumption of small perturbations to uniform applied velocity and magnetic 
fields, both parallel to the z-axis, they obtain the following linearized equations: 

o = a2j, 

p = -us. 

Here, MKSQ units are implied and uniform permeability p and scalar conduc- 
tivity c are assumed. The fluid velocity V and magnetic field H have been re- 
placed by the non-dimensional perturbation vectors v = (V-V,)/V, and 
h = (H - H,)/H,, respectively, and w = V x v and j = V x hare the corresponding 
vorticity and current density vectors. The subscript 0 denotes uniform values 
at infinity, and p is the pressure perturbation (P  - P,)/p V 2  in non-dimensional 
form. The co-ordinates of physical space are normalized to L, and R, is the 
corresponding magnetic Reynolds number pcTr,L. The ratio of magnetic-energy 
density to the fluid kinetic-energy density, pHi/p V;, is denoted by a2, so that 
l/a is the ratio of fluid speed to the Alfv6n speed for infinite conductivity, or the 
‘Alfvh number’ of the flow (Sears 1959). 

The curl of equation (1) is combined with equation (2) t o  yield the governing 
differential equation for current and vorticity, 

(4) ( ~ 2  - 2k a/&) j = 0. 

This may be recognized as the Oseen equation of linearized viscous flow (e.g. 
Lamb 1932), where 2k = R,( 1 - a 2 )  has replaced the conventional Reynolds 
number Re. In general, solutions to the above equations are subject to the usual 
conditions of solenoidal v and h and to Ohm’s Law (which appears in a differential 
form as equation (l)), J = B(E+,uVXH). 

The Maxwell equation V x E = 0 completes the set of equations, which should 
suffice in principle for the solution of three-dimensional boundary-value problems 
consistent with the assumption of small perturbations. 

For the case of plane and axisymmetric flows to be treated herein, the fact 
that all perturbations vanish at infinity (a point which will be discussed in a 
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subsequent section) leads to the conclusion that E = 0. The linearized form of 

(6) 
equation ( 5 )  is therefore 

for plane flow. The same result applies to axisymmetric flow with the subscripts 
B and r replacing z and y, respectively. 

The general solution to equation (2) for the perturbations v and h is obtained 

(7) 
by direct integration, and is v = a2h+a1, 

where a, is an arbitrary irrotational and solenoidal vector field which vanishes 
a t  infinity. If v and h are separated into irrotational and rotational parts, 
denoted respectively by the subscripts 1 and 2, then the irrotational part must 

(8) 
satisfy the condition 

and the rotational part may be assumed to have the form 

v1 = h,, 

v, = a2h,, 
with no loss in generality. 

(9) 

SinguIar solutions 
The irrotational components satisfy Laplace’s equation in the stream function 

and potential. The singular solutions are the familiar source and, for plane flow, 
vortex. The rotational components satisfy, according to equations (6) and (9), 
relations of the form 

jZa = 2khUB, 

which is Oseen’s equation when written in terms of the stream function. The 
potential does not exist for the rotational solutions, but equation (10) is satisfied 
identically for plane flow by a pseudo-potential. In  either case, singular solutions 
of Oseen’s equation lead to the ‘rotational source’ and ‘rotational vortex’ 
for plane flow, 

h - a--2 v - + 1 -1k&(X-G 
2 -  z - - - z n  

x {(z- 5) d-lK,( f kd)  k KO( k w, (y- 7) d-lK,( k w, O } ,  (11)  

x ((7 - y) d-1 K,( f kd), (z - 5) d-l K,( f kd) T KO( f kd) ,  01, (1 2) 

where K ,  denotes the modified Bessel function of the second kind and nth order, 
d = { ( ~ - E ) ~ + ( y - q ) z } *  (and s = { ( X - E ) ~ + ~ ~ ) #  below), and the sign choice 5 
refers to k > 0 and k < 0, respectively. The rotational source for axisymmetric 
flow is given by 

h, = a-21, = 5 ~n-lkek(z-8 

h - a-28, = $n-18-3ek(Z--5TS) {( 2 - 5 ) ( 1 _ + ~ ~ ) + ~ 8 z , ~ ( l _ f I c s ) , o } .  (13) 2 -  

In  each case, the rotational singular solutions approach the corresponding 
irrotational solutions at very small distances, and also in the limit of small lkl 
(i.e. R, 1 or a2 near unity). On the other hand, the rotational solutions are 
dominated by exponential convergence to zero at large distances, everywhere 
except in a parabolic region with focus at the singular point. The region inside 
the parabolic surface will be referred to as the ‘wake’ (e.g. Lamb 1932). Evidently 
the magnetohydrodynamic wake will appear upstream of the singular point for 
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u2 > 1 and downstream for u2 < 1, as noted by Greenspan & Carrier (1959) for 
viscous flow of a conducting fluid over a finite flat plate with aligned fields. In  
general, the irrotational solutions apply to disturbances which fully penetrate 
the fluid, whereas rotational solutions involve a 'shielding ' of the disturbance 
by the fluid, tending to limit its effect to a wake region. 

Boundary conditions 
All disturbances to the uniform conditions H,, V, which are due to a finite 

body (in either two- or three-dimensional flow) vanish at  infinity in a fluid of zero 
conductivity. This statement applies as well to the case of finite conductivity 
because of the existence of a dissipative mechanism which attenuates disturb- 
ances created at the body. It has been shown by Sears & Resler (1959) that, in 
the limit of infinite conductivity, the assumption of small perturbations which 
vanish at infinity leads to identical perturbations in v and h, which are exactly 
those of classical hydrodynamic flow about the same body. Stewartson (1960) 
has pointed out that other solutions are also possible in this limit. The present 
paper applies to the small R, situation, which should be expected to represent 
a perturbation to the familiar hydrodynamic solutions. The fact that perturba- 
tions may be small in this limit everywhere in the flow, i.e. that the boundary 
conditions for zero viscosity and small R, are consistent with small perturbations 
even at the boundary, leads to a unique solution of the equations, 

The linearized equations were obtained by retaining only first-order per- 
turbation quantities. It is consistent to approximate the boundary conditions 
at the body to the same order. For definiteness, a family of bodies of length L 
is considered in both plane and axisymmetric flow. In  terms of the non-dimen- 
sional variables, these bodies lie in the range [0,1] of x and may be expressed in 
terms of the parameter E .  If Yo and R, are shape functions of order unity, then, 
on the body surface, 

y = Y(x)  = ~yO(x) and r = R(x) = eR,(z). 

In conventional hydrodynamic flow, the order of magnitude of the velocity 
perturbations (with the possible exception of stagnation regions near the 
leading- and trailing-edges) is E ,  and E is assumed small compared to unity. The 
same is true of the present analysis, except that the assumption that pertur- 
bations are small will be consistent only subject to certain restrictions on the 
parameters B,, and 612. 

The boundary condition on V is approximated by neglecting vz compared to 
unity, thus yielding the familiar results, correct to first order in E ,  

The subscripts u and 1 denote the upper and lower airfoil surfaces, respectively. 
The situation is not quite so straightforward for the condition on H, since 

a functional relationship exists between the normal and tangential components 
of H, and the boundary conditions express neither as an explicit function of x. 
In  particular, J vanishes inside the body, independent of its conductivity, so 
that H is the gradient of a harmonic function. On the other hand, consistent 
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with the assumption of small perturbations in the flow, it may be assumed that 
h, and hence ah/&, is of order e inside bodies i ~ 8  well. By integrating the diverg- 
ence and curl relations over the body cross-section, it may be shown directly 
that h, and hv are continuous to first order in e across an airfoil, and that h, 
vanishes at the surface of a body of revolution. These results do not, of course, 
apply to the infinite-conductivity case of Sears & Resler, where h is large both 
at the boundary and inside the body. 

A degree of generality may be added by considering the possibility of (1) a 
(non-dimensional) current distribution I(%) in the z-direction inside airfoils, 
and (2) a (non-dimensional) magnetic source distribution M ( z )  inside either the 
slender bodies or airfoils. Condition 1 violates the requirement that E = 0, 
but may serve as a good approximation if the airfoil contains wires impressed 
with a very small electric field, especially if the conductivity of the wire is great 
compared to that of the fluid. Condition 2 is not in conflict with the general 
statement V . B = 0, but is rather a statement of the non-uniformity of ,u associ- 
ated with magnetization effects in the body. I(z) and M(x)  are written, respec- 
tively, as the integrals of V x h and V .  h over the body cross-section at any 
station x. The continuity conditions on h discussed above are replaced by the 
conditions 

(16) I Ah,(x) = M(z) ,  Ah,(x) = -I(cc), 

and h,{x, N4) = M ( X ) / 2 7 m 4 ,  hz{G R ( 4 )  = hz(G 01, 

for plane and axisymmetric flow, respectively. The difference of a quantity 
evaluated across the airfoil has been denoted by A, where, for example, 

A h J 4  = h&, r,(.,> - hv{x, KC.)). (17) 

It is evidently necessary that I and M be of order e or less for plane flow and M 
of order e2 or less for axisymmetric flow. 

Thin airfoil theory 

of camber C(x)  and thickness T(z),  defined by 
The boundary condition on V in thin-airfoil flow may be expressed in terms 

Y, ,dx)  = C ( 4  * m4. (18) 

AzJ,(x) = T'(x), (19) 

Here camber includes the effect of incidence of the airfoil. Equation (15) becomes 

so that camber effects, if present, affect only Av, (and not Av,) to first order in E .  

This condition, as yet unspecified, is expressed in the form 

Av,(z) = -G(z), (20) 

where i t  is expected that G ( x )  will depend in some way upon C ( x ) .  In  the con- 
ventional lifting-airfoil theory G is the vortex distribution, and it is the non- 
dimensional pressure loading, by equation (3), even in the present theory. 

Another step is necessary in order to linearize the boundary conditions for 
thin airfoils. The above relations are the approximate conditions which must be 
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satisfied at the airfoil. It must be demonstrated in addition that it is sufficient 
to  satisfy the same conditions at the x-axis. It is well known that this step is 
valid for conventional airfoil theory, to which the present theory must reduce 
for R, = 0, and therefore should be valid for sufficiently small R,. (An upper 
bound on the range of k is established in the approximate solutions of the boun- 
dary-value problem.) This step allows the thickness and lifting problems of 
conventional thin-airfoil theory to be studied separately, and an analogous 
decomposition is possible in the case of a conducting fluid. The two composite 
problems, thickness-plus-magnetization and camber-effects-plus-current, will 
be referred to in a more general sense as the thickness and lifting problems of 
finite-conductivity thin-airfoil theory. 

The thickness problem 

An airfoil of thickness T ( x )  with C ( x )  = 0 is assumed to contain magnetization 
per unit span M ( x )  made non-dimensional by H,. The boundary conditions at  
infinity and on the airfoil surface may be satisfied by distributionsf,(x) andf,(x), 
respectively, of irrotational and rotational source solutions, singular on the 
x-axis, leading to the following integral equations: 

1 

0 
f+n-l(1-a2)S f,(E) ( y d - l ) k e k ( " - ~ K l (  + k d ) d E  = i { M ( z ) - T ' ( x ) }  (21) 

and &n-l(l -a,) J-01fl(5) (yd-2)dE = +{T'(z)--a2M(x)}. (22) 

The latter equation has the form of the familiar integral equation of conventional 
airfoil theory, for which the solution is 

(This result is obtained by expanding fl(t) in a Taylor series about E = x and 
observing that y = + T ( x )  is of order E . )  The above solution is valid except near 
blunt edges, where the linearized equations are also invalid, and is subject to 
the usual restriction that E < 1. 

The integral involvingf, may be written in the form 

where the result of equation (23) has been used and where 

Q = S1f2(E){d-2T k d - l e ~ s - ~ ) K , (  ~t kd)}dE. (25) 

The following bound on the magnitude of Q may be obtained for large Ikl 
(Lary 1959) by employing the asymptotic expansions of K,: 

0 

IQI < If21 [.-l+ (1 - x)-' + (277 I kl)* (d + (1 -x)-B} (1 + O(k-l)}] .  (26) 

Consequently, the remainder terms in equation (24) are small except at the 
leading and trailing edges if e. / lkJ < 1, that is, if 

IkI < E - ~ .  (27) 
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The fact that lkl may be large compared to unity justifies aposteriori the use of 
asymptotic-expansion formulae in obtaining equation (26), since the bound on 
Q increases monotonically with I kl . The limitation on k ensures not only that the 
perturbations are small, but also that they approach the irrotational solution 
very near the body. 

Subject to the restrictions on the magnitude of E and k ,  the approximate dis- 
tribution functions for singular solutions on the x-axis are therefore 

Solution for $ow perturbations. The solution of the thickness problem now 
consists of calculating the perturbation quantities associated with the singu- 
larity distributions derived above. For example, 

x k ekb--5) - K,( i- kd)  i- KO( k kd)]  T g)] d t .  (29) ( [3d5 
Similar expressions may be written for all perturbation quantities. 

Several properties of the solution are evident a t  this point. In  the limit R, -+ 0, 
the solutions for v and h decouple to yield the conventional irrotational hydro- 
dynamic and magnetostatic solutions, respectively, and, for u2 = 0, the solution 
for v reduces to the conventional solution, while the solution for h is irrelevant. 
Also, if M = T', then v and h are again the conventional irrotational solutions, 
and v = h. 

The situation for u2 near unity requires some clarification. If a2 approaches 
unity for any fixed values of R, and d ,  then the product kd will approach zero. 
The small-argument expansions of KO and K ,  may then be employed in the 
rotational kernel together with an expansion of the exponentials, yielding the 
result 

vs(2,y) = -6 1 [T'(5) (7) x-5 - ~ R m a Z i M ( 5 ) - T ' ( t ) ) ~ + l n d ) ]  & { l + O ( k ) ) -  277 
(30 )  

Constant terms in the kernel do not contribute, since 

lo1 T'(x) ax = 0 = M ( x )  ax. lo1 
In  the same way, the vorticity is given for a2 near 1 by 

{M(5)  - T ' M )  d5{1+ O ( 4 ) .  (31 )  
R,a2 1 

W&Y) = - Jo 
Consequently, small-perturbation solutions exist in the limit a2 = 1. These have 
finite current and vorticity proportional to R,, in spite of the fact that fi and fi 
become large like (1 - u2)-l. This behaviour is found to be typical of the same 
limit in the lifting and slender-body problems as well, and indicates the 
possibility of rotational solutions with flow at the Alfvh speed. All of the above 
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observations should be regarded as general properties of the small-perturbation 
flow for aligned fields. 

It is interesting that the theory predicts well behaved solutions with flow at the 
Alfvhn speed, in contrast to the results of Greenspan & Carrier (1959) for infinite 
conductivity and small viscosity, in which choking of the entire flow occurs for 
a finite flat plate at a2 = 1. As shown by Hasimoto (1959), the (apparent) 
convection term vanishes for a2 = 1 in the infinite-conductivity approximation, 
so that no non-trivial solution satisfying the no-slip condition on V can exist. 
On the other hand, for zero viscosity and finite conductivity, a proper solution 
for the flow appears to exist because a shear in V is permitted at the boundary, 
and H and V are not ‘locked together’ as with infinite conductivity. 

A quantity of primary interest is the pressure at the airfoil surface. It is a 
familiar result from conventional thin-airfoil theory that d may be replaced in 
the kernel by 12- 61 in the consistent formula for flow quantities at the airfoil 
surface. It may be shown (Lary 1959) that, subject only to the Jimitations on e 
and k derived above, the same is true of the rotational kernel. 

Drag of thickness airfoils. It is possible at  this point to calculate the forces 
acting on the thickness airfoil. Forces appear, due to the pressure acting on the 
airfoil surface and to the magnetic field acting on the system of magnets inside 
the airfoil, and lead to a drag D. The perturbation hx is the same to first order 
in E at y = 0 and y = & aT(z) for I = 0. (This step is necessary, since perturbation 
quantities calculated from the singularity model are only appropriate as evaluated 
in the flow field, and not inside the body.) The consistent formulae for v, and hz 
at the airfoil surface are introduced, yielding 

The ‘effective thickness distribution’ (in producing drag) has been denoted by P, 
where 

P ( 4  = T ( 4  - JOX WE) dE. (33) 

The drag integrhl may be approximated for two cases: k small compared to 
unity, and k large compared to e-l (but still small compared to E-2) .  In  the first 
case, the small argument expansions for KO and K ,  are used, leading to the result 

In  the second case, the asymptotic forms for KO and K ,  may be employed, since 
the quantity k 15- 61 in their arguments represents kd, and d is of order E or 
larger. Here, C, has the form, 

-. .. . -. . . 
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The integrand vanishes for =- x if k > 0 and for 5 < x if k < 0, so that the kernel 
is simply 2 Iz- l1-4. In  addition, the subcases k > 0 and k < 0 may be combined 
by noting that the simplified integrand is a symmetric function of x and E, or 

I 

D 

Distance, z 

PIQURE 1. Pressure distribution on a parabolic-thickness airfoil and extended body axis 
R - 0.4 ____ . R  - 4.0 ___- for various values of R,  and for us = 4. R,  = 0, -- 2 m -  7 3 m -  9 

R,  = 40, --. 

The drag of a thin airfoil is therefore proportional to e2 in either case, and to 
R,u2 if k is small compared to unity, and R i  11 -a21-fa2 if k is between e-l 
and e-2. The pressure distribution and drag for a symmetrical airfoil of parabolic 
thickness distribution and thickness ratio e are presented in figures 1 to 3. It is 
interesting that drag increases monotonically with a2 for values of R, less than 
about 10, but has a maximum near a2 = 1 for larger values of R,. Dashed lines 
of constant k delineate regimes in which the various approximations to CD are 
appropriate. The relative maximum of CD for large values of R, near a2 = 1 
results from the increased penetration of the current layer into the fluid due to 
the near-zero effective convection speed of current and vorticity . 
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FIGURE 3. Drag coefficient of parabolic-thickness airfoil in a conducting fluid for several 
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The dependence of drag upon R, and a2 may also be deduced for the magnetic- 
boundary-layer limit, 1 kJ 9 .+. The power 0% required to move the body through 
the fluid must be equal, from energy considerations, to the rate of dissipation 
of energy by ohmic heating. If one employs the results of Sears & Resler (1959), 
in which the magnetic-boundary-layer limit is characterized by a no-slip 
condition on H, then the current density is of order H , J l k l / L  in the upper and 
lower layers. The result of the calculation of C, is 

c, = O(ll-a21+R;Eaa2>, (37) 

The drag in this limit is analogous to the drag of viscous friction, in that both 
vary as the inverse square root of the appropriate Reynolds number and are 
essentially independent of 8 for thin airfoils. In  the case of the liquids mentioned 
earlier, for which the quantity R,/R, is very small compared to unity, ‘magnetic 
friction’ plays a dominant role over viscous friction in determining the drag of 
the body, provided that Em is larger than c2 and a2 is not near zero. 

The appearance of drag in the boundary-layer limit is in conflict with the 
prediction of McCune (1960) for the aligned-fields case. The above result in- 
dicates, moreover, that the departure of drag, for finite R,, from the infinite 
conductivity value (of zero) is stronger in the aligned-fields case than in the 
crossed-fields case, in which the departure is proportional to Rkl. 

Optimum drag bodies. The drag integral for Ikl < 1 is the integral involved in 
the induced drag of finite wings in the Prandtl lifting-line theory and also in the 
Karman wave-resistance formula for supersonic bodies of revolution. Since the 
properties of this integral are well known, optimum drag bodies are easily cal- 
culated for this regime (Sears 1947). An example of the results is that the airfoil 
of minimum drag subject to a fixed cross-sectional area is an elliptical cylinder, 
provided that no magnetization is present. Similar techniques apply to the 
rkgime 1 << lkl < c2, where the inner integral in equation (35) is the Abel 
integral, for which the general inversion is also well known (e.g. Whittaker & 
Watson 1952). 

T h e  lifting problem 

A zero-thickness airfoil with ordinate y = C(x)  is located near the x-axis on the 
range [0,1] and contains a current distribution of strength I(x), made non- 
dimensional by H,,. The boundary condition on V is satisfied by distributions 
g1 and g2 of the irrotational and rotational vortex singularities, respectively, or 

x [(x - 6 )  d-lKl( f M) T &( f kd) ] }  d6. (38) 

The solution of the direct problem in conventional flow is possible only after 
some analysis (e.g. Glauert 1947) involving the particular nature of the kernel 
(x - ()/d2 and the specification of a cyclic constant (circulation about the airfoil) 
by the Kutta condition. Presumably this analysis, which essentially seeks the 
‘resolvent kernel ’ of the integral equation involving the simplified kernel 
(x - <)-I, could be duplicated for the present, more complicated kernel involving 
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the modified Bessel functions. In  view of the difficulties involved in this pro- 
cedure, i t  would seem preferable, however, to resort to the device of studying 
first the mathematically direct problem of calculating the camber shape for a 
specified pressure loading G and current distribution I .  Wherever possible, the 
problem of calculating G for a given airfoil shape will be solved. 

Proceeding in this spirit, the discontinuity conditions on H and V yield equa- 
tions in g ,  and g2 similar to equations (22) and (24), except that the solutions 

may be written directly with no limitation on E or k. It must be recalled, however, 
that an approximation has been introduced in satisfying the boundary con- 
ditions at the axis rather than on the airfoil. This consideration requires that 
y again be regarded as a first-order quantity in E ,  rather than zero, and leads to 
the same limitations on 8 and k obtained in the analysis of the thickness problem. 

Forces on the lifting airfoil. The lift 9 on the airfoil has contributions from the 
pressure difference across the airfoil and from the Lorentz force acting on the 
current inside the airfoil. The latter has the general form J x B, so that the lift 
coefficient is simply 

(&=--- LZ' - s,' {G(x)  - a21(x)) dx. 
P VEL 

The drag coefficient, 

where P(z) = G(z) - I ($ ) ,  involves a slightly different kernel from its counterpart 
in the thickness problem. 

Lifting airfoil of zero drag. A necessary and sufficient condition for zero-drag 
is p = 0, the case of irrotational flow. The lift coefficient for the zero-drag case 
is denoted by cL and is related to the conventional value (CL)a=O in the following 
way: 1 

CL = - (1 - a2) 1 G(z) dx = (1 - a2) (CL)a=o. (42) 
0 

Equation (38) becomes C'(x) = .& s,' sg d t ,  (43) 

so that the airfoil shape for a given G is the same as for the conventional case. 
The lift for a given airfoil shape is proportional to (1 - a2), provided that current 
is driven in the airfoil such as to maintain the equality of I and G. The results for 
this special case correspond quite closely to the infinite-conductivity results of 
Sears 6 Resler (1959). This includes the possibility of solving the mathematically 
indirect problem by inverting the integral equation in G (Glauert 1947). 

It is possible to study some features of the general solution for a given airfoil 
shape by examining the limiting cases 1 k I < 1 and I k 1 9- 1 for I = 0. The inclusion 
of a known current distribution involves only a formal modification of the results. 
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T h e  'small k ' approximation. In  the first case, the small-argument expansions 
of KO and K ,  are used in equation (38) with the following result: 

(44) 
where y is Euler's constant. The first term on the right-hand side is recognizable 
as the camber shape for irrotational flow. For a given airfoil shape, G may be 
approximated for small values of R,a2 by employing the conventional (R,  = 0 )  
solution Go, say, then solving the following iterated equation for G: 

It may be shown (Lary 1959) in this way that the loading for a flat plate at in- 
cidence A,  also contains a term associated with parabolic camber for irrotational 
flow. The lift for this case is 

C, = 7 T A O [ l + ~ R , , a 2 ( l + y + 1 n ~ ~ k ~  +$)I. (46) 

The above result is not valid if k is very near zero, since the term involving 
In l&kl is no longer small. However, for fixed R, and loading G, the limit a2 -+ 1 
(i.e. k --f 0) may be studied by retaining on the right in equation (44) only the 
leading term in In I k 1, or 

C'(x)  = -$R,,a2n-11n lkl G(x)dx+O(G) .  (47) sb 
This equation may be written directly as the lift formula for a flat plate, i.e. as 

A particularly interesting feature of the lift curve for the flat plate is that CId 
has an extremum at a2 = 1, where C, = 0, and is positive on either side of a2 = 1 
for positive incidence. This behaviour is shown in figure 4. 

T h e  ' large k '  approximation. In  the second case, lkl B 1, the asymptotic form 
of KO reveals that, for k > 0, the contribution of the rotational term for 6 > x 
in equation (38) is dominated by the exponential e-2k(c-x), and may be neglected 
in the limit of large k. (This contribution is of order IkI-l, whereas the range from 
0 to x contributes a term of order lkl-4.) An appropriate formula, valid to within 
terms of order l /k ,  is given by integrating equation (38) by parts, then differen- 
tiating with respect to x. For k > 0, this has the form 

A similar expression may be written for k < 0, where the integration limits on 
the last term are x and 1. 

Equation (49) suggests that, for lkl 3 1, the terms of order Ikl-4 may be 
excluded in a first approximation to the solutions. (It should be recalled in this 
connexion that the bound on k permits passage to arbitrarily large values 
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provided that E is made sufficiently small. The term 'magnetic boundary layer ' 
has, however, been reserved herein for the case Ikl 9 c2, in which the layer is 
thinner than the body and a no-slip condition on H results.) In  this approxima- 
tion, the solution is again obtainable from the results of the conventional theory 
and is identical to the predictions of the magnetic-boundary-layer theory of 
Sears & Resler (except for the specification of the cyclic constant, which is 
discussed in the subsequent section). The results are obtained through radically 
different approximations to the boundary condition on H (appropriate to the 
respective conductivity range), and the agreement indicates the consistency of 
the approximations made in either case. 

FIUURE 4. Lift coefficient CL of a flat plate at incidence A,  for R,, = 10. Calculated using 
Kutta, condition, . . . . . . ; calculated using magnetohydrodynamic analogue to  Kutta 
condition, - - - - - - -. 

The Kutta condition and a magnetohydrodynamic analogue. The analogy of the 
effects of finite conductivity in magnetohydrodynamic flow with aligned fields 
to the effects of non-zero viscosity in the conventional flow is apparent, since 
both produce wake regions of rotational flow which degenerate to boundary layers 
in the limit of large values of the appropriate (viscous or magnetic) Reynolds 
number. (The similarity even extends in the Sears-Resler theory to the no-slip 
condition on H in the magnetic-boundary-layer limit.) The question therefore 
arises as to what, if any, analogue to the Kutta condition arises from using the 
approximation of large R, in solving the magnetohydrodynamic flow about 
thin airfoils. 

Howarth (1935) demonstrated that the Kutta condition evolves from the fact 
that, for steady flow, no net vorticity is shed into the wake. It is, therefore, the 
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fact that vorticity is convected into the wake from the trailing edge that selects 
this edge as the one from which the velocity singularity must be removed in the 
boundary-layer limit. From this consideratioh, one might conjecture that the 
Kutta condition should be replaced by a condition which removes any velocity 
or magnetic field singularity which occurs at the edge from which the vorticity 
and current flow into the wake. (It has been shown above that the magneto- 
hydrodynamic wake lies downstream of the body for a2 < 1 and upstream for 
a2 > 1.) Some evidence in favour of this conjecture is obtained within the frame- 
work of the small perturbation theory for the ‘large k’ range of conductivity. 
In  particular, it may be shown (Lary 1969) that the condition predicted by the 
above reasoning is necessary for the existence of a solution to the approximate 
integral equation (i.e. equation (49) or its analogue for k < 0). 

A consequence of the change of end condition on G at a2 = 1 is that the lift of 
a flat plate at incidence in the infinite-conductivity approximation should not 
change sign (as originally predicted in the Sears-Resler theory) at a2 = 1, but 
should always be positive (or zero) for positive incidence. In  this connexion, it is 
shown directly in equation (48) that the lift of a flat plate vanishes at a2 = 1, 
but is positive for positive incidence on either side of a2 = 1 for arbitrary, but 
finite, conductivity. Since lift is proportional to the circulation, this provides 
further evidence that magnetic effects influence the determination of the cyclic 
constant. (‘Cyclic constant’ here implies the circulation at infinity, since the 
flow may be rotational in a large region near the body.) 

An exception to the altered Kutta condition is the case of irrotational flow, 
I = G, in which no magnetohydrodynamic interaction occurs. On the other 
hand, for the infinite-conductivity limit, the Sears-Resler theory indicates the 
equality of h and v in the flow, and thus of the irrotational source and/or vortex 
distributions. G is determined uniquely by C’ (and the appropriate leading- or 
trailing-edge condition) so that I should not be interpreted as the current being 
driven in the airfoil, which may be an insulator, but rather as the net current 
flowing in the airfoil and in the upper and lower boundary layers. In  this latter 
case the altered condition is again necessary. 

The effect of viscosity. With regard to the magnetic-boundary-layer limit, it  
must be recalled that viscous effects are present in this case as well. This involves 
no essential complication for 01.2 < 1, since the Kutta condition coincides with the 
magnetohydrodynamic condition. However, for a2 > 1, the two conditions are 
not generally compatible. A choice must be made, then, between viscous and 
magnetohydrodynamic considerations as a basis for determining the cyclic 
constant. In  the case where the viscous boundary layer lies inside the magnetic 
boundary layer, the Howarth argument regarding vorticity flux into the viscous 
wake is not valid, since vorticity is convected into the magnetic wake as well. 
(The supposition that the boundary layers decouple is based on the fact that 
I k I /Re is greatly different from unity, so that viscous and magnetic effects then 
occur with considerably different length scales.) This admits the possibility of an 
altered condition on the velocity discontinuity, such as that conjectured above. 

For the case where the viscous boundary layer is the outer layer, Hasimoto 
(1959) has shown that the reversed wake again appears. Hasimoto employs the 
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concept of an effective reversal of stream direction for a2 > 1, and thus implicitly 
replaces the usual Kutta condition for the limit of large Re. Thus, with the 
inclusion of the Hasimoto observation, it might further be conjectured that the 
altered Kutta condition applies to large, as well as small, values of the ratio lkl /Re. 

Slender body theory 
A slender body of revolution with cross-sectional area S(x) is located on the 

x-axis and contains magnetization M ( x ) ,  made non-dimensional by HoL. As in 
the airfoil theory, the approximate solutions for the source distributions, 

SJ(x)  - a2M(x) M(x) - S’(z) 
1 - a 2  ’ fl(x) = -- - 7  j&) = 1-09 

may be obtained subject to lkl < 1/e21ne. (B1) 

The restriction on k arises from the fact that the rotational singularities are 
distributed on the x-axis in order to satisfy boundary conditions on the body 
surface, a distance E away. For this reason it might be expected that the range 
of k could be extended by distributing singularities very near the body surface, 
on rings concentric with the axis, for example. Applied to the irrotational source, 
this technique leads to functions which involve complete elliptic integrals, 
whereas more complicated functions are obtained in the case of the rotational 
source. Near the body these functions are asymptotic for large I kl to the solutions 
for the plane-flow rotational source derived previously. It is therefore likely 
that this technique would in fact extend the range of k in which a solution could 
be obtained to that corresponding to the airfoil flows, but the mathematical 
complications are severe. 

All perturbation quantities may be evaluated directly by integration over the 
known singularity distributions, using the appropriate kernels. As an example 
of the form of the integrals, w, may be written in the usual way as 

The drag is calculated in the same way as for the thickness-airfoil problem, 
with the result that 

Because of the nature of the axisymmetric solution, it is not possible to approxi- 
mate quantities on the body surface by the corresponding values on the body 
axis. For this reason s may not be replaced by Ix - 61 in equation (53), for example, 
since r must be regarded as R(z) .  
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The results for Ikl < 1 may, however, be expressed by expanding the ex- 
ponential involved in the respective kernels. Equation (52 )  may then be written 
as a formula for pressure a t  the body surface. 

The same approximation, applied to equation (53), leads to the following drag 
formula for lkl << 1: 

It is evident from equation (52) that the task of approximating results for 
JkJ 3 1 is not as straightforward as in the airfoil theory. 

Conclusion 
The finite-conductivity solutions obtained above for small perturbations to 

uniform aligned magnetic and velocity fields satisfy the Oseen equation of 
viscous-flow theory, but do not suffer with the viscous case the defect of 
having boundary conditions which are inconsistent with the linearization of the 
equations. 

The flow is found to be essentialiy irrotational a t  large distances, except in a 
parabolic wake which extends either downstream or upstream from the body, 
depending on whether the stream speed is greater or less than the Alfv6n speed. 
The direction of the wake appears, for large values of the parameter I kl , to influence 
the choice of the cyclic constant (circulation at infinity) for the lifting-airfoil 
flows. In  any case, the current and vorticity generated by the fluid-field inter- 
action lead to a drag which is proportional to the magnetic energy density and 
increases like R, for IkJ << 1 and like Ri 11 - ct21-* for e- l<  lkl < E - ~ .  

The question of stability of the flow solutions, especially as regards the un- 
familiar upstream-wake behaviour, has not been considered. Such considerations 
may play an important role in resolving the question of the proper (Kutta-type) 
condition for lifting airfoils, as well as the significance of solutions which involve 
large perturbations at infinity. 

The author is greatly indebted to Professor W. R. Sears and to Professor 
E. L. Resler, who suggested the present research, for many helpful discussions 
and valuable suggestions. 

REFERENCES 

GLAUERT, H. 1947 Tlte Element8 of Aerofoil Theory. Cambridge University Press. 
GREENSPAN, H. P. & CARRIER, G. F. 1959 The magnetohydrodynamic flow past a flat 

plate. J .  Fluid Mech. 6 ,  77. 
HASIMOTO, H. 1959 Viscous flow of a perfectly conducting fluid with a frozen magnetic 

field. Phys. Fluids, 2, 337. 
15 Fluid Mech. 12 



226 Edmund C .  Lary 

HOWARTH, L. 1935 The theoretical determination of the lift coefficient for a thin elliptic 

LAMB, H. 1932 Hydrodynamics. Cambridge University Press. 
LARY, E. C. 

electrical conductivity. Ph.D. Thesis, Cornell University. 
MCCUNE, J. E. 

ductivity. J .  Fluid Mech. 7, 449. 
SEARS, W. R. 1947 On projectiles of minimum wave drag. Quart. Appl. Math. 4, 361. 
SEARS, W. R. 1959 Magnetohydrodynamic effects in aerodynamic flows. ARS Journal, 

SEARS, W. R. & RESLER, E. L. 1959 Theory of thin airfoils in fluids of high electrical 

STEWARTSON, K. 1960 On the motion of a non-conducting body through a perfectly 

WHITTAKER, E. T. & WATSON, G.  N. 1952 A Course of Modern Analysis. Cambridge 

cylinder. Proc. Roy. SOC. A, 149, 568. 

1959 A theory of thin airfoils and slender bodies in fluids of arbitrary 

1960 On the motion of thin airfoils in fluids of finite electrical con- 

29, 397. 

conductivity. J .  Fluid Mech. 5, 257. 

conducting fluid. J .  Fluid Mech. 8, 82. 

University Press. 


